International Journal of Engineering & Scientific Research

Vol.5 Issue 2, February 2017,

ISSN: 2347-6532 Impact Factor: 5.900

Journal Homepage: http://www.ijmra.us, Email: editorijmie@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's

Directories of Publishing Opportunities, U.S.A

RADIO D-DISTANCE NUMBER OF SOME GRAPHS

T. Nicholas*

John Bosco**

Abstract

If u, v are vertices of a connected graph G the D-length of a connected u-v path s is defined as $\ell^D(s) = \ell(s) + \deg(v) + \deg(u) + \sum \deg(w)$ where the sum runs over all intermediate vertices w of s and ℓ (s) is the length of the path. The D-distance $d^D(u, v)$ between two vertices u, v of a connected graph G is defined a $d^D(u, v) = \min \{\ell^D(s)\}$ where the minimum is taken overall u-v paths s in G. In other words, $d^D(u, v) = \min \{\ell(s) + \deg(v) + \deg(u) + \sum \deg(w)\}$ where the sum runs over all intermediate vertices w in s and minimum is taken over all u-v paths s in G. Radio D-distance coloring is a function $f: V(G) \to \mathbb{N} \cup \{0\}$ such that $d^D(u, v) + |f(u) - f(v)| \ge \operatorname{diam}^D(G) + 1$, where $\operatorname{diam}^D(G)$ is the D-distance diameter of G. A D-distance radio coloring number of f is the maximum color assigned to any vertex of G. It is denoted by $\operatorname{rn}^D(f)$. In this paper we find the radio D-distance number of some well known graphs.

Keywords: D-distance, Radio D-distance coloring, Radio D-distance number.

^{*} Department of Mathematics, St. Jude's College, Thoothoor, K.K.Dist, TN, India.

^{**} Research Scholar, Department of Mathematics, St. Jude's College, Thoothoor, K.K.Dist, TN, India.

1. Introduction

By a graph G = (V,E) we mean a finite undirected graph without loops or multiple edges. The order and size of G are denoted by p and q respectively.

Let G be a connected graph of diameter d and let k an integer such that $1 \le k \le d$. A radio k-coloring of G is an assignment f of colors (positive integers) to the vertices of G such that $d(u, v) + |f(u) - f(v)| \ge 1 + k$ for every two distinct vertices u, v of G. The radio k-coloring number $rc_k(f)$ of a radio k-coloring f of G is the maximum color assigned to a vertex of G. The radio k-chromatic number $rc_k(G)$ is $min\{rc_k(f)\}$ over all radio k-colorings f of G. A radio k-coloring f of G is a minimum radio k-coloring if $rc_k(f) = rc_k(G)$. A set S of positive integers is a radio k-coloring set if the elements of S are used in a radio k-coloring of some graph G and S is a minimum radio k-coloring set if S is a radio k-coloring set of a minimum radio k-coloring of some graph G. The radio 1-chromatic number $rc_1(G)$ is then the chromatic number $rc_1(G)$. When k = Diam(G), the resulting radio k-coloring is called radio coloring of G. The radio number of G is defined as the minimum span of a radio coloring of G and is denoted as rn(G).

Radio labelling (multi-level distance labelling) can be regarded as an extension of distance-two labeling which is motivated by the channel assignment problem introduced by Hale [6]. Chartrand et al.[2]. Introduced the concept of radio labeling of graph. Chartrand et al. [3] gave the upper bound for the radio number of Path. The exact value for the radio number of Path and Cycle was given by Liu, and Zhu [10]. However Chartrand et al. [2] obtained different values than Liu and Zhu [10]. They found the lower and upper bound for the radio number of Cycle. Liu [9] gave the lower bound for the radio number of Tree. The exact value for the radio number of Hypercube was given by R. Khennoufa and O.Togni [8]. M.M.Rivera et al. [16] gave the radio number of $C_n \times C_n$, the cartesian product of C_n . In[4] C.Fernandez et al. found the radio number for Complete graph, Star graph, Complete Bipartite graph, Wheel graph and Gear graph. M.T.Rahim and I.Tomescu [12] investigated the radio number of Helm Graph. The radio number for the generalized prism graphs were presented by Paul Martinez et.al. in [11].

The D-distance was introduced by Reddy Babu et al. [13, 14, 15]. If u, v are vertices of a connected graph G the D-length of a connected u-v path s is defined as $\ell^D(s) = \ell(s) + \deg(v) + \deg(v)$

deg (u) $+\sum$ deg(w) where sum runs over all intermediate vertices w of s and $\ell(s)$ is the length of the path. The D-distance $d^D(u, v)$ between two vertices u, v of a connected graph G is defined a $d^D(u, v) = \min\{\ell^D(s)\}$ where the minimum is taken overall u-v paths s in G. In other words, $d^D(u, v) = \min\{\ell(s) + \deg(v) + \deg(u) + \sum \deg(w)\}$ where the sum runs over all intermediate vertices w in s and minimum is taken over all u-v paths s in G. The D-distance eccentricity, D-distance radius and D-distance diameter are analogous to the usual path. In this paper, we introduce the concept of radio D-distance coloring. The Radio D-distance coloring is a function $f: V(G) \to \mathbb{N} \cup \{0\}$ such that $d^D(u, v) + |f(u) - f(v)| \ge \dim^D(G) + 1$, where diam $d^D(G)$ is the $d^D(G)$ -distance diameter of $d^D(G)$ -distance coloring number of $d^D(G)$ -distance number of $d^D(G)$ -distance number of $d^D(G)$ -distance number of $d^D(G)$ -distance number of some well known graphs.

2. Main Result

Theorem 2.1.

For star graph $K_{1,n}$, $rn^D(K_{1,n}) \le n+2$, $n \ge 2$.

Proof.

Let $V(K_{1,n})=\{v,\,v_1,\,v_2,\,\ldots,\,v_n\}$ be vertex set, where v is the central vertex . Then $d^D(v,\,v_i)=n+2,\,1\leq i\leq n,\,d^D(v_i,\,v_{i+1})=n+4,\,1\leq i\leq n-1,$ So $diam^D(K_{1,n})=n+4.$ Define the function f as $f(v)=0,\,f(v_i)=i+2,\,1\leq i\leq n.$ Therefore, $rn^D(K_{1,n})\leq n+2.$

Theorem 2.2.

For subdivision of a star graph, $\operatorname{rn}^D\left(S(K_{1,n})\right) \leq 6n+8, n \geq 2.$

Proof.

Let $V(S(K_{1,n})) = \{v\} \cup \{v_1, v_2, \dots, v_n\} \cup \{u_1, u_2, \dots, u_n\}$ and $E(S(K_{1,n})) = \{e_1, e_2, \dots, e_n\}$ $\cup \{s_1, s_2, s_3, \dots, s_n\}$. Consider v is the center vertex then v is adjacent to $\{u_1, u_2, \dots, u_n\}$ and $\{u_1, u_2, \dots, u_n\}$ are adjacent to $\{v_1, v_2, \dots, v_n\}$. Then $d^D(v, u_i) = n + 3$, $d^D(v, v_i) = n + 5$, $1 \le i \le n$, if u_i and v_i are adjacent $d^D(u_i, v_i) = 4$, if u_i and v_i are not adjacent $d^D(u_i, v_i) = n + 8$, $d^D(v_i, v_{i+1}) = n$ +10, So diam^D(S(K_{1,n})) = n + 10. Define the function f as f(v) = 0, $f(v_i) = n + 4$, $1 \le i \le n$, $f(u_i) = n + 5i + 8$, $1 \le i \le n$. Therefore, $rn^D(S(K_{1,n})) \le 6n + 8$.

Theorem 2.3.

For complete graph K_n , $rn^D(K_n) = n-1$, $n \ge 2$.

Proof.

Since $\text{diam}^D(G) = d^D(u, v)$ for any $u, v \in V(K_n)$ using radio D-distance implies $|f(u) - f(v)| \ge 1$ for all $u, v \in V(K_n)$. Since $f : V(K_n) \to \mathbb{N} \cup \{0\}$ is injective it follows that $\text{rn}^D(K_n) \le n - 1$. Since |V| = n, $\text{rn}^D(K_n) \ge n - 1$. Hence the result.

Theorem 2.4.

For complete bipartite $K_{m,n}$, $\operatorname{rn}^D(K_{m,n}) \leq 2n + m$ if $n \geq 3$, $m \geq 2$.

Proof

Let $\{v_1, \, v_2, \, v_3, \, ..., \, v_m\}$ and $\{u_1, \, u_2, \, u_3, \, ..., \, u_n\}$ be the partite sets. Then if v_i and u_j are adjacent $d^D(v_i, \, u_j) = \, n + m + 1, \, d^D(v_i, \, v_{i+1}) = 2n + m + 2, \, d^D(u_j, \, u_{j+1}) = n + 2m + 2, \, \text{So diam}^D(G) = 2(n + 1) + m.$ Define the function f as $f(v_i) = i - 1, \, 1 \le i \le m$ if $f(u_i) = m + n + i, \, 1 \le i \le n$. Therefore, $f(K_{m,n}) \le 2n + m$.

Note. When m = n, $rn^{D}(K_{m,n}) \leq 3n$.

The graph $C_n^{(t)}$ denoting the one point union of t copies cycle C_n . The graph $C_3^{(t)}$ (or $K_3^{(t)}$) is called friendship graph.

Theorem 2.5.

For friendship graph $C_3^{(t)}$, $rn^D(C_3^{(t)}) \le 3t + 5$, $t \ge 2$

Proof:

Let $V(G) = \{v, v_1, v_2, \dots, v_{2t}\}$ be the vertex set, where v is the central vertex. Then $d^D(v, v_i) = 2t + 3$, $1 \le i \le 2t$, if v_i and v_{i+1} are adjacent $d^D(v_i, v_{i+1}) = 5$, $1 \le i \le 2t - 1$, if v_i and v_{i+1} are not adjacent $d^D(v_i, v_{i+1}) = 2t + 6$, $1 \le i \le 2t - 1$, So diam $d^D(G) = 2t + 6$. Define the function $d^D(v_i, v_{i+1}) = 2t + 6$, $d^D(v_i, v_{i+1})$

Reference

- [1] F. Buckley and F. Harary, *Distance in Graphs*, Addition- Wesley, Redwood City, CA, 1990.
- [2] G. Chartrand, D. Erwinn, F. Harary, and P. Zhang, "Radio labeling of graphs," *Bulletin of the Institute of Combinatorics and Its Applications*, vol. 33, pp. 77–85, 2001.
- [3] G. Chartrand, D. Erwin, and P. Zhang, Graph labeling problem suggested by FM channel restrictions, Bull. Inst. Combin. Appl., 43, 43-57(2005).
- [4] C. Fernandaz, A. Flores, M. Tomova, and C. Wyels, The Radio Number of Gear Graphs, arXiv:0809. 2623, September 15, (2008).
- [5] J.A. Gallian, A dynamic survey of graph labeling, Electron. J. Combin. 19 (2012) #Ds6.
- [6] W.K. Hale, Frequency assignment: Theory and applications, Proc. IEEE 68 (1980), pp. 1497–1514.
- [7]F. Harary, Graph Theory, Addision wesley, New Delhi (1969).
- [8] R. Khennoufa and O. Togni, The Radio Antipodal and Radio Numbers of the Hypercube, ccepted in 2008 publication in ArsCombinatoria.
- [9] D. Liu, Radio number for trees, Discrete Math. 308 (7) (2008) 1153–1164.
- [10] D. Liu, X. Zhu, Multilevel distance labelings for paths and cycles, SIAM J. Discrete Math. 19 (3) (2005) 610–621.
- [11] P. Murtinez, J. OrtiZ, M. Tomova, and C. Wyles, Radio Numbers For Generalized Prism Graphs, Kodai *Math. J.*, **22**,131-139(1999).
- [12] M. T. Rahim, I. Tomescu, OnMulti-level distance labelings of Helm Graphs, accepted for publication in ArsCombinatoria.
- [13] Reddy Babu,D., Varma, P.L.N.,*D-distance in graphs*, Golden ResearchThoughts, 2 (2013),53-58.
- [14] Reddy Babu, D., Varma, P.L.N., Average *D*-Distance Between Vertices Of A Graph, Italian Journal Of Pure And Applied Mathematics N. 33;2014 (293;298).
- [15] Reddy Babu, D., Varma, P.L.N., Average *D*-Distance Between Edges Of A Graph ,Indian Journal of Science and Technology, *Vol* 8(2), 152–156, *January* 2015.
- [1 6] M. M. Rivera, M. Tomova, C. Wyels, and A. Yeager, The Radio Number of Cn_Cn,re submitted to Ars Combinatoria, 2009.