RADIO D-DISTANCE NUMBER OF SOME GRAPHS

T. Nicholas ${ }^{*}$
John Bosco**

Abstract

If u, v are vertices of a connected graph G the D-length of a connected u-v path s is defined as $\ell^{D}(s)=\ell(s)+\operatorname{deg}(v)+\operatorname{deg}(u)+\sum \operatorname{deg}(w)$ where the sum runs over all intermediate vertices w of s and $\ell(\mathrm{s})$ is the length of the path. The D-distance $\mathrm{d}^{\mathrm{D}}(\mathrm{u}, \mathrm{v})$ between two vertices u, v of a connected graph G is defined a $d^{D}(u, v)=\min \left\{\ell^{D}(s)\right\}$ where the minimum is taken overall $u-v$ paths s in G. In other words, $\mathrm{d}^{\mathrm{D}}(\mathrm{u}, \mathrm{v})=\min \left\{\ell(\mathrm{s})+\operatorname{deg}(\mathrm{v})+\operatorname{deg}(\mathrm{u})+\sum \operatorname{deg}(w)\right\}$ where the sum runs over all intermediate vertices w in s and minimum is taken over all u-v paths s in G. Radio D-distance coloring is a function $f: \mathrm{V}(\mathrm{G}) \rightarrow \mathbb{N} \cup\{0\}$ such that $\quad \mathrm{d}^{\mathrm{D}}(\mathrm{u}, \mathrm{v})+\mid f(u)-$ $f(v) \geq \operatorname{diam}^{\mathrm{D}}(\mathrm{G})+1$, where $\operatorname{diam}^{\mathrm{D}}(\mathrm{G})$ is the D-distance diameter of G. A D-distance radio coloring number of f is the maximum color assigned to any vertex of G. It is denoted by $\mathrm{rn}^{\mathrm{D}}(f)$. In this paper we find the radio D-distance number of some well known graphs.

Keywords:D-distance, Radio D-distance coloring, Radio D-distance number.

[^0]
1. Introduction

By a graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ we mean a finite undirected graph without loops or multiple edges. The order and size of G are denoted by p and q respectively.

Let G be a connected graph of diameter d and let k an integer such that $1 \leq \mathrm{k} \leq \mathrm{d}$. A radio k coloring of G is an assignment f of colors (positive integers) to the vertices of G such that $d(u, v)$ $+|f(u)-f(v)| \geq 1+k$ for every two distinct vertices u, v of G. The radio k-coloring number $\mathrm{rc}_{\mathrm{k}}(\mathrm{f})$ of a radio k -coloring f of G is the maximum color assigned to a vertex of G . The radio k chromatic number $\operatorname{rc}_{k}(G)$ is $\min \left\{\operatorname{rc}_{k}(f)\right\}$ over all radio k-colorings f of G. A radio k-coloring f of G is a minimum radio k-coloring if $\mathrm{rc}_{\mathrm{k}}(\mathrm{f})=\mathrm{rc}_{\mathrm{k}}(\mathrm{G})$. A set S of positive integers is a radio k coloring set if the elements of S are used in a radio k-coloring of some graph G and S is a minimum radio k-coloring set if S is a radio k -coloring set of a minimum radio k -coloring of some graph G . The radio 1-chromatic number $\mathrm{rc}_{1}(\mathrm{G})$ is then the chromatic number $\chi(\mathrm{G})$. When k $=\operatorname{Diam}(\mathrm{G})$, the resulting radio k -coloring is called radio coloring of G . The radio number of G is defined as the minimum span of a radio coloring of G and is denoted as $r n(G)$.

Radio labelling (multi-level distance labelling) can be regarded as an extension of distance-two labeling which is motivated by the channel assignment problem introduced by Hale [6]. Chartrand et al.[2]. Introduced the concept of radio labeling of graph. Chartrand et al. [3] gave the upper bound for the radio number of Path. The exact value for the radio number of Path and Cycle was given by Liu, and Zhu [10]. However Chartrand et al. [2] obtained different values than Liu and Zhu [10]. They found the lower and upper bound for the radio number of Cycle. Liu [9] gave the lower bound for the radio number of Tree. The exact value for the radio number of Hypercube was given by R. Khennoufa and O.Togni [8]. M.M.Rivera et al. [16] gave the radio number of $C_{n} \times C_{n}$, the cartesian product of C_{n}. In $[4]$ C.Fernandez et al. found the radio number for Complete graph, Star graph, Complete Bipartite graph, Wheel graph and Gear graph. M.T.Rahim and I.Tomescu [12] investigated the radio number of Helm Graph. The radio number for the generalized prism graphs were presented by Paul Martinez et.al. in [11].

The D-distance was introduced by Reddy Babu et al. [13, 14, 15].If u, v are vertices of a connected graph G the D-length of a connected $u-v$ path s is defined as $\ell^{D}(\mathrm{~s})=\ell(\mathrm{s})+\operatorname{deg}(\mathrm{v})+$
$\operatorname{deg}(\mathrm{u})+\sum \operatorname{deg}(w)$ where sum runs over all intermediate vertices w of s and $\ell(\mathrm{s})$ is the length of the path. The D-distance $\mathrm{d}^{\mathrm{D}}(\mathrm{u}, \mathrm{v})$ between two vertices u , v of a connected graph G is defined a $d^{D}(u, v)=\min \left\{\ell^{D}(s)\right\}$ where the minimum is taken overall $u-v$ paths s in G. In other words, $d^{D}(u$, $\mathrm{v})=\min \left\{\ell(\mathrm{s})+\operatorname{deg}(\mathrm{v})+\operatorname{deg}(\mathrm{u})+\sum \operatorname{deg}(w)\right\}$ where the sum runs over all intermediate vertices w in s and minimum is taken over all u-v paths s in G. The D-distance eccentricity, Ddistance radius and D-distance diameter are analogous to the usual path. In this paper, we introduce the concept of radio D-distance coloring. The Radio D-distance coloring is a function $f: \mathrm{V}(\mathrm{G}) \rightarrow \mathbb{N} \cup\{0\}$ such that $\mathrm{d}^{\mathrm{D}}(\mathrm{u}, \mathrm{v})+|f(u)-f(v)| \geq \operatorname{diam}^{\mathrm{D}}(\mathrm{G})+1$, where $\operatorname{diam}^{\mathrm{D}}(\mathrm{G})$ is the D-distance diameter of G. A radio D-distance coloring number of f is the maximum color assigned to any vertex of G. It is denoted by $\mathrm{rc}^{\mathrm{D}}(f)$. Then $\mathrm{rn}^{\mathrm{D}}(\mathrm{G})$ is the D distance number of G. In this paper, we find the radio D-distance number of some well known graphs.

2. Main Result

Theorem 2.1.

For star graph $\mathrm{K}_{1, \mathrm{n}}, \mathrm{rn}^{\mathrm{D}}\left(\mathrm{K}_{1, \mathrm{n}}\right) \leq \mathrm{n}+2, \mathrm{n} \geq 2$.

Proof.

Let $V\left(K_{1, n}\right)=\left\{v, v_{1}, v_{2}, \ldots, v_{n}\right\}$ be vertex set, where v is the central vertex. Then $d^{D}\left(v, v_{i}\right)=n$ $+2,1 \leq i \leq n, d^{D}\left(v_{i}, v_{i+1}\right)=n+4,1 \leq i \leq n-1$, $\operatorname{Sodiam}^{D}\left(K_{1, n}\right)=n+4$. Define the function f as $\mathrm{f}(\mathrm{v})=0, \mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=\mathrm{i}+2,1 \leq \mathrm{i} \leq \mathrm{n}$. Therefore, $\mathrm{rn}^{\mathrm{D}}\left(\mathrm{K}_{1, \mathrm{n}}\right) \leq \mathrm{n}+2$.

Theorem 2.2.

For subdivision of a star graph, $\mathrm{rn}^{\mathrm{D}}\left(\mathrm{S}\left(\mathrm{K}_{1, \mathrm{n}}\right)\right) \leq 6 \mathrm{n}+8, \mathrm{n} \geq 2$.

Proof.

Let $V\left(\mathrm{~S}\left(\mathrm{~K}_{1, \mathrm{n}}\right)\right)=\{v\} \cup\left\{v_{1}, v_{2}, \ldots, v_{n}\right\} \cup\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ and $E\left(\mathrm{~S}\left(\mathrm{~K}_{1, \mathrm{n}}\right)\right)=\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ $\mathcal{U}\left\{s_{1}, s_{2}, s_{3}, \ldots, s_{n}\right\}$. Consider v is the center vertex then v is adjacent to $\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ and $\left\{u_{1}\right.$, $\left.u_{2}, \ldots, u_{n}\right\}$ are adjacent to $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. Then $\mathrm{d}^{\mathrm{D}}\left(\mathrm{v}, \mathrm{u}_{\mathrm{i}}\right)=\mathrm{n}+3, \mathrm{~d}^{\mathrm{D}}\left(\mathrm{v}, \mathrm{v}_{\mathrm{i}}\right)=\mathrm{n}+5,1 \leq \mathrm{i} \leq \mathrm{n}$, if u_{i} and v_{j} are adjacent $d^{D}\left(u_{i}, v_{j}\right)=4$, if u_{i} and v_{j} are not adjacent $d^{D}\left(u_{i}, v_{j}\right)=n+8, d^{D}\left(v_{i}, v_{i+1}\right)=n$
+10 , So $\operatorname{diam}^{D}\left(S\left(K_{1, n}\right)\right)=n+10$. Define the function f as $f(v)=0, f\left(v_{i}\right)=n+4,1 \leq i \leq n, f\left(u_{i}\right)$ $=\mathrm{n}+5 \mathrm{i}+8,1 \leq \mathrm{i} \leq \mathrm{n}$. Therefore, $\mathrm{rn}^{\mathrm{D}}\left(\mathrm{S}\left(\mathrm{K}_{1, \mathrm{n}}\right)\right) \leq 6 \mathrm{n}+8$.

Theorem 2.3.

For complete graph $\mathrm{K}_{\mathrm{n}}, \mathrm{rn}^{\mathrm{D}}\left(\mathrm{K}_{\mathrm{n}}\right)=\mathrm{n}-1, \mathrm{n} \geq 2$.

Proof.

Since $\operatorname{diam}^{\mathrm{D}}(\mathrm{G})=\mathrm{d}^{\mathrm{D}}(\mathrm{u}, \mathrm{v})$ for any $\mathrm{u}, \mathrm{v} \in \mathrm{V}\left(\mathrm{K}_{\mathrm{n}}\right)$ using radio D-distance implies $\mid f(u)-$ $f(v) \mid \geq 1$ for all $\mathrm{u}, \mathrm{v} \in \mathrm{V}\left(\mathrm{K}_{\mathrm{n}}\right)$. Since $\mathrm{f}: \mathrm{V}\left(\mathrm{K}_{\mathrm{n}}\right) \rightarrow \mathbb{N} \cup\{0\}$ is injective it follows that $\mathrm{rn}^{\mathrm{D}}\left(\mathrm{K}_{\mathrm{n}}\right) \leq$ $\mathrm{n}-1$. Since $|V|=n, \mathrm{rn}^{\mathrm{D}}\left(\mathrm{K}_{\mathrm{n}}\right) \geq \mathrm{n}-1$. Hence the result.

Theorem 2.4.

For complete bipartite $\mathrm{K}_{\mathrm{m}, \mathrm{n}}, \mathrm{rn}^{\mathrm{D}}\left(\mathrm{K}_{\mathrm{m}, \mathrm{n}}\right) \leq 2 n+m$ if $n \geq 3, m \geq 2$.

Proof

Let $\left\{v_{1}, v_{2}, v_{3}, \ldots, v_{m}\right\}$ and $\left\{u_{1}, u_{2}, u_{3}, \ldots, u_{n}\right\}$ be the partite sets. Then if v_{i} and u_{j} are adjacent $d^{D}\left(v_{i}, u_{j}\right)=n+m+1, d^{D}\left(v_{i}, v_{i+1}\right)=2 n+m+2, d^{D}\left(u_{j}, u_{j+1}\right)=n+2 m+2, \operatorname{Sodam}^{D}(G)=2(n+$ $1)+\mathrm{m}$. Define the function f as $\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=\mathrm{i}-1,1 \leq \mathrm{i} \leq \mathrm{mf}\left(\mathrm{u}_{\mathrm{i}}\right)=\mathrm{m}+\mathrm{n}+\mathrm{i}, 1 \leq \mathrm{i} \leq \mathrm{n}$. Therefore, $\mathrm{rn}^{\mathrm{D}}\left(\mathrm{K}_{\mathrm{m}, \mathrm{n}}\right) \leq 2 n+m$.
Note. When $\mathrm{m}=\mathrm{n}, \mathrm{rn}^{\mathrm{D}}\left(\mathrm{K}_{\mathrm{m}, \mathrm{n}}\right) \leq 3 n$.

* The graph $\mathrm{C}_{\mathrm{n}}{ }^{(\mathrm{t})}$ denoting the one point union of t copies cycle C_{n}. The graph $\mathrm{C}_{3}{ }^{(\mathrm{t})}\left(\right.$ or $\left.\mathrm{K}_{3}{ }^{(\mathrm{t})}\right)$ is called friendship graph.

Theorem 2.5.

For friendship graph $\mathrm{C}_{3}{ }^{(\mathrm{t})}, \mathrm{rn}^{\mathrm{D}}\left(\mathrm{C}_{3}{ }^{(\mathrm{t})}\right) \leq 3 \mathrm{t}+5, \mathrm{t} \geq 2$

Proof:

Let $V(G)=\left\{v, v_{1}, v_{2}, \ldots, v_{2 t}\right\}$ be the vertex set, where v is the central vertex. Then $d^{D}\left(v, v_{i}\right)=$ $2 t+3,1 \leq i \leq 2 t$, if v_{i} and v_{i+1} are adjacent $d^{D}\left(v_{i}, v_{i+1}\right)=5,1 \leq i \leq 2 t-1$, if v_{i} and v_{i+1} are not adjacent $d^{D}\left(v_{i}, v_{i+1}\right)=2 t+6,1 \leq i \leq 2 t-1$, So $\operatorname{diam}^{D}(G)=2 t+6$. Define the function f as $f(v)$ $=0$, if i is odd then $\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=\left(\frac{i-1}{2}\right)+4$ and if i is even then $\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=2 \mathrm{t}+\left(\frac{i}{2}\right)+5$. Therefore, $\mathrm{rn}^{\mathrm{D}}\left(\mathrm{C}_{3}{ }^{(\mathrm{t})}\right) \leq 3 \mathrm{t}+5$.

Reference

[1] F. Buckley and F. Harary, Distance in Graphs,Addition- Wesley, Redwood City, CA, 1990.
[2] G. Chartrand, D. Erwinn, F. Harary, and P. Zhang, "Radio labeling of graphs," Bulletin of the Institute of Combinatorics and Its Applications, vol. 33, pp. 77-85, 2001.
[3] G. Chartrand, D. Erwin, and P. Zhang, Graph labeling problem suggested by FM channel restrictions, Bull. Inst. Combin. Appl., 43, 43-57(2005).
[4] C. Fernandaz, A. Flores, M. Tomova, and C. Wyels, The Radio Number of Gear Graphs, arXiv:0809. 2623, September 15, (2008).
[5] J.A. Gallian, A dynamic survey of graph labeling, Electron. J. Combin. 19 (2012) \#Ds6.
[6] W.K. Hale, Frequency assignment: Theory and applications, Proc. IEEE 68 (1980), pp. 1497-1514.
[7]F. Harary, Graph Theory, Addision wesley, New Delhi (1969).
[8] R. Khennoufa and O. Togni, The Radio Antipodal and Radio Numbers of the Hypercube, ccepted in 2008 publication in ArsCombinatoria.
[9] D. Liu, Radio number for trees, Discrete Math. 308 (7) (2008) 1153-1164.
[10] D. Liu, X. Zhu, Multilevel distance labelings for paths and cycles, SIAM J. Discrete Math. 19 (3) (2005) 610-621.
[11] P. Murtinez, J. OrtiZ, M. Tomova, andC. Wyles, Radio Numbers For Generalized Prism Graphs, Kodai Math. J., 22,131-139(1999).
[12] M. T. Rahim, I. Tomescu, OnMulti-level distance labelings of Helm Graphs, accepted for publication in ArsCombinatoria.
[13] Reddy Babu,D., Varma, P.L.N.,D-distance in graphs, Golden ResearchThoughts, 2 (2013),53-58.
[14] Reddy Babu, D., Varma, P.L.N.,Average D-Distance Between Vertices Of A Graph, Italian Journal Of Pure And Applied Mathematics - N. 33;2014 (293;298).
[15] Reddy Babu, D., Varma, P.L.N., Average D-Distance Between Edges Of A Graph ,Indian Journal of Science and Technology, Vol 8(2), 152-156, January 2015.
[16] M. M. Rivera, M. Tomova, C. Wyels, and A. Yeager, The Radio Number of Cn _Cn,re submitted to Ars Combinatoria, 2009.

[^0]: *Department of Mathematics, St. Jude's College,Thoothoor, K.K.Dist, TN, India.
 ** Research Scholar, Department of Mathematics, St. Jude's College, Thoothoor, K.K.Dist, TN, India.

